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Motivation

The most popular paradigm in multiple object tracking (MOT)
is tracking-by-detection where objects of interest are first de-
tected and then associated. For the association step, the
appearance, spatial and motion information are jointly used.
Consequently, it is not clear which visual features are the best.
Our objective is to rank several visual features for MOT focused
on urban scenes according to the performance of the detector.

Methodology

To measure the ability of a descriptor to correctly retrieve an
object from a set of objects , we tried to link two bounding
boxes referring to the same object throughout a video using
some affinity measures. Working with the true boxes gives
access to the true identity of the objects and prevents the ap-
parition of biases such as detecting only large objects.
Moreover, to simulate detections, we introduced noise in two
ways. Firstly, by adding a white Gaussian noise (parametrized
by a standard deviation sigma) to the bounding boxes coordi-
nates. Secondly, by skipping some frames (parametrized by a
sampling step).
The visual descriptors are :
• color-based histogram descriptors : RGB (RGB) or

grayscale (GR) ;
• histogram of oriented gradients (HOG) ;
• CNN-based features : ResNet-18 (RSN), VGG-19 (VGG),

DenseNet-121 (DNS) and EfficientNet-B0 (EFF)
representations ;

• re-identification (reID) descriptor : OSNet-AIN [1] for
persons (OSN) and the model of [2] for vehicles (VID).

The affinity measures are :
• L1 and L2 distances (L1, L2)
• Rank-1 counts (R1) ;
• Bhattacharyya distance (B, for histogram-based features) ;
• cosine similarity (C)
This leads to 35 pairs descriptor-affinity. We evaluated on four
MOT datasets : DETRAC, UAVDT, MOT17 and WildTrack.

High-level explanation of the experimental methodology
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Conclusion

ReID features with cosine similarity are one of the best descriptors
for pedestrians and vehicles, regardless of the spatial precision and
recall of the detector. When the boxes are not too noisy, color his-
tograms with the Bhattacharyya distance are a good choice. More-
over, the size of objects matters on the choice of visual features.
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